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The third-order polynomial method for two-dimensional
convection and di�usion
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SUMMARY

Using the upstream polynomial approximation a series of accurate two-dimensional explicit numerical
schemes is developed for the solution of the convection–di�usion equation. A third-order polynomial
approximation (TOP) of the convection term and a consistent second-order approximation of the dif-
fusion term are combined in a single-step �ux-di�erence algorithm. Stability analysis con�rms that
the TOP-12 scheme satis�es the CFL condition for two dimensions. Using smaller and narrower �ux
stencils compared to algorithms of similar accuracy, the TOP-12 scheme is more e�cient in terms of
computations per single node. Numerical tests and comparison with other well-known algorithms show
a high performance of the developed schemes. Copyright ? 2003 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The solution of many problems of �uid dynamics typically involves the numerical approxi-
mation of an unsteady convection–di�usion equation

@C
@t
=−∇(Cu) +∇(E∇C) (1)

Here u=(ux; uy) is the �uid velocity in x and y direction, respectively; E=(Ex; Ey) is the
turbulent eddy coe�cient; C=C(t; x; y) is the transported scalar quantity; ∇=(@=@x; @=@y);
and t is the time variable. A control-volume form of Equation (1) for a quasi-uniform �ow
can be written as

Ck+1
i; j =Ck

i; j − �(CE − CW)− �(CN − CS) + �(C ′
E − C ′

W) + �(C ′
N − C ′

S) (2)

where Ck
i; j is the cell-averaged value of the transported scalar at the central (i; j) compu-

tational cell at time-level k; CW; CE; CS; CN are the west-, east-, south- and north-face
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Figure 1. Computational stencil for Davis and Moore [3] scheme (black dots). Nodes for the
east-face convective �ux (for u as shown) are marked with circles. Shaded cells are involved

in di�erencing along the x-axis.

values (convective �uxes) of the transported scalar C for the central cell; C ′
W; C ′

E; C ′
S; C ′

N
are the respective di�usive �uxes; �=ux�t=�x and �=uy�t=�y are the Courant numbers;
�=Ex�t=(�x)2 and �=Ey�t=(�y)2 are the di�usion numbers; �x;�y is the grid size in x
and y directions, respectively; �t is the time step. Mass conservation is guaranteed if

CW|i; j=CE|i−1; j ; CS|i; j=CN|i; j−1; C ′
W|i; j=C ′

E|i−1; j ; C ′
S|i; j=C ′

N|i; j−1 (3)

Various conditions at the boundary � of a computational domain can easily be speci�ed
utilizing the combined convective–di�usive �ux (F) along the normal co-ordinate �. Thus,
the Dirichlet type boundary (C�=v�) leads to Ck+1

i; j =v� and F�=F�−1; and the Neumann
condition (@C�=@�=v�) is satis�ed when F�=F�−1 + v�.
Advantages of discretization of the convection term using the upstream third-order approx-

imation were discussed intensively by Leonard [1]. Even though, the �rst descriptions of
high-order approximation methods appeared in the literature in the late 1960s, the methods
were not popular for a long time due to the computer power constraints. The one-dimensional
third-order-accurate QUICKEST algorithm, derived by Leonard [2] using a convective in-
tegration method, gave a new breakthrough in computational science toward accurate and
e�cient numerical schemes. Replacing the time derivative in a Taylor expansion with spa-
tial derivatives, Davis and Moore [3] suggested a di�erent way of deriving the QUICKEST
scheme. They neglected cross-derivative terms while extending the scheme for two dimen-
sions (Figure 1). Chen and Falconer [4, 5] formulated various implicit and explicit forms of
the two-dimensional QUICKEST schemes. They showed that simple addition of individual x
and y contributions of one-dimensional high-order schemes, without appropriate spatial cross-
terms, could lead to a basic instability. This was resolved by Leonard and Niknafs [6] and
Rasch [7] (respective computational stencil is shown in Figure 2), Ekebj�rg and Justesen [8]
(Figure 3), and LeVeque’s [9] method 5, who included some cross-terms to improve sta-
bility of the two-dimensional schemes. The schemes utilize 10-node computational stencils,
a formally needed minimum for the third-order accuracy. Although the cross-terms do not
a�ect a formal third-order accuracy, they do improve the stability of the schemes. To achieve
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Figure 2. Computational stencil for Leonard and Niknafs [6] and Rasch [7] schemes (black dots). Nodes
for the east-face convective �ux (for u as shown) are marked with circles. Shaded cells are involved

in di�erencing along the x-axis.
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Figure 3. Computational stencil for Ekebj�rg and Justesen [8] scheme (black dots). Nodes for
the east-face convective �ux (for u as shown) are marked with circles. Shaded cells are involved

in di�erencing along the x-axis.

better stability and accuracy, Leonard et al. [10] employed the cross-terms of up to a fourth-
order approximation to develop a ‘uniformly third-order polynomial interpolation algorithm’
(UTOPIA). The UTOPIA utilizes a 12-node computational stencil and eight-node convective
and di�usive �uxes, as shown in Figure 4. LeVeque’s [9] method 6 is similar to UTOPIA
for the convective term; however, it does not consider di�usive �uxes.
In the e�ort to re�ne computational accuracy, one has to cope with a larger number of

nodes and computations, associated with a higher-order scheme. The number of nodes in
a computational stencil cannot be decreased below a certain value without compromising
accuracy or stability; however, the reduction of nodes in a �ux stencil does not necessarily
a�ect properties of the scheme, as long as the entire computational stencil and the resulting
single-step update are preserved.

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 41:997–1019
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Figure 4. Computational stencil for Leonard et al. [10] scheme (black dots). Nodes for the east-face �ux
(for u as shown) are marked with circles. Shaded cells are involved in di�erencing along the x-axis.

It is generally recognized [10] that to maintain the same accuracy as lower-order schemes,
higher-order ones allow a much coarser mesh, thus keeping comparable low overall cost.
This is not the case for computations in water bodies having narrow channels, where the
�ux stencils derived in References [6–9] would require at least three computational nodes
across a channel, and UTOPIA even four (as in Figures 2–4). Hence, to be e�cient a high-
order scheme must utilize a narrow �ux stencil having a minimum number of nodes. These
considerations were taken into account in the paper to develop a set of third-order-accurate
numerical schemes using the upstream third-order polynomial method (TOP). The schemes
are tested against analytical solutions and other algorithms.

2. PSEUDO-FLUX-DIFFERENCE FORMULATION

2.1. Convective �uxes

The formulation starts with the approximation of the convection term in Equation (1) using the
Lagrangian technique, which assumes that the value of the transported scalar C is constant
along the trajectory [(�ri; j ; t k); (ri; j ; t k+1)] of a �uid particle, i.e. Ck+1

i; j = �Ck
i; j. Here �r=(xi −

��x; yj − ��y) is the upstream point. The value �Ck
i; j can be found using the piece-wise

interpolation polynomial, P, resulting in the explicit single-step update

Ck+1
i; j =P=(p · �S) (4)

where the vector �S={ �Sn}n=1; N comprises of values of the transported scalar C in all nodes
of a computational stencil at time-level k; N is the number of nodes in the stencil; p=
{pn(�; �)}n=1; N ; and the operation (X ·Y) is the dot product of the vectors X;Y. The M th
degree interpolation polynomial may take the following form:

P=(b · f) (5)

Here, N components of the vector b(�; �) are the products of two power functions �m′
and

�m′′
(m′; m′′=0; M); and the coe�cient vector f={fn}n=1; N has to be identi�ed. The N equa-
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tions, (b(�n; �n)·f)= �Sn (n=1; N ), can be derived requiring that the polynomial passes through
every node from the computational stencil �S. The resulting system of linear equations is

Bf= �S (6)

where the matrix B={b(�n; �n)}n=1; N has been identi�ed earlier. Solution of system (6) can
be obtained by �nding the inverse matrix B−1, and then

f=B−1 �S (7)

For computational e�ciency, the non-conservative single-step update (4) has to be rewritten
in a conservative �ux-di�erence form

Ck+1
i; j =Ck

i; j − �(CE − CW)− �(CN − CS) (8)

Some procedures, like the �ux integral method [10], give a unique formulation of the �uxes;
others may produce non-unique �uxes (or pseudo-�uxes). The latter case does not mean that
a successful solution cannot be found; moreover, it gives certain �exibility in imposing of
additional desirable features on the scheme. Thus, the east-face and north-face convective
�uxes are presumed, respectively, in the form

CE=(A(�; �) · Si); CN=(A(�; �) · Sj) (9)

Here the �uxes are speci�ed at stencils Si={Ck
i′ ; j′}l=1; L and Sj={Ck

j′ ; i′}l=1; L, each comprising
of L nodes. Substituting Equations (4) and (9) into the right and left side of Equation (8),
respectively, a system of linear algebraic equations can be deduced, where the components
{Al}l=1; L have to be identi�ed. The most straightforward splitting of the �uxes is expected
for L=N=2, when the combined number of unknown values {Al(�; �)}l=1; L and {Al(�; �)}l=1; L
is equal to the number of nodes (N ) in the computational stencil. If some equations of the
system are linearly dependent, additional conditions have to be employed. Similar proce-
dure is possible for the �ux stencils having L¿N=2 nodes, and the system is inconsistent
for L¡N=2.
The algorithm can be extended for a non-uniform rectangular mesh, though the compu-

tational cost (memory mainly) slightly increases. Procedures of computing of coe�cients f
(Equation (7)) and the �ux splitting (Equations (8)–(9)) have to be repeated for each node
once before the main loop. To remain computationally e�ective, the extended algorithm has
to keep the vector A in memory for every node throughout the entire computational cycle.
Modi�cation of the algorithm for a curvilinear mesh would involve the co-ordinate transfor-
mation into rectangular ones, and appearance of new terms to be approximated. In�uence of
the terms on the scheme e�ciency is yet to be explored. Three-dimensional version of the
scheme can be obtained in a similar fashion.
One may reason that usage of pseudo-�uxes, CW; CE; CS and CN, instead of true �uxes,

CTW; CTE ; CTS and CTN, introduces a lower-order error in a single-step update. This may occur
if the scheme formulation is started with the substitution of centroidal values of �uxes instead
of cell-averaged ones into Equation (2). However, the suggested in this paper �ux-splitting
method ensures that the lower-order errors (if any) are mutually cancelled. Indeed, let us
assume (for a one-dimensional case) that the eastward pseudo-�ux is derived with an error �,
i.e. CE=CTE + �. Since, the �ux-splitting procedure (8)–(9) of the single-step update (4) is
formulated to satisfy the equality CE−CW=CTE−CTW, a deviation of the westward pseudo-�ux
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from the ‘true’ value can be found as CW−CTW=�. Thus, the introduced lower-order error (if
any) is cancelled during the �ux di�erencing, and accuracy of the original single-step update
is preserved.

2.2. Di�usive �uxes

The �ux-di�erence formulation of di�usion term from Equation (1) reads

Ck+1
i; j =Ck

i; j + �(C ′
E − C ′

W) + �(C ′
N − C ′

S) (10)

where east- and north-face di�usive �uxes are sought in the form

C ′
E=(D(�; �) · Si) and C ′

N=(D(�; �) · Sj) (11)

respectively. Here components of the vector D={Dl}l=1; L are the functions of the Courant
numbers � and �. Using Equations (4)–(5), the di�erences of the di�usive �uxes can be
expressed as follows:

C ′
E − C ′

W = (�x)2
@2C
@x2

∣∣∣∣
r=�ri; j

=
@2P
@�2

C ′
N − C ′

S = (�y)2
@2C
@y2

∣∣∣∣
r=�ri; j

=
@2P
@�2

(12)

At this stage the pseudo-�ux-splitting procedure, introduced in Section 2.1, is used. Finally,
one can substitute Equations (8)–(11) into (2) to obtain the explicit �nite-di�erence approx-
imation of the convection–di�usion equation (1) as

Ck+1
i; j =Ck

i; j + FE − FW + FN − FS (13)

where

FE = ((�D(�; �)− �A(�; �)) · Si)
FN = ((�D(�; �)− �A(�; �)) · Sj)

(14)

FW|i; j=FE|i−1; j ; FS|i; j=FN|i; j−1 (15)

2.3. Stability analysis

It is instructive to obtain stability criteria of newly developed numerical schemes. According
to the von Neumann stability analysis, a solution of Equation (13) is sought in the form

Ck
i; j=V k exp(I(i�x + j�y))

where �x=k x�x; �y=ky�y are the phase angles; V k is the amplitude of the Fourier compo-
nent at k�t; k x; ky are the wave numbers; I=

√−1. The method requires that the ampli�cation
factor over one complete time step satisfy the following condition for all possible values of
�x; �y:

|G(�)|= |V k+1=V k |61 (16)

For all schemes developed in this paper, the ampli�cation factor is computed and anal-
ysed graphically for the special case of uniform �ow and grid (�; �=const; �=�=� and
�=�x=�y).
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Figure 5. Initial shape (rectangular parallelepiped) of the transported scalar for the test case.

2.4. Test case

To verify the TOP schemes, a series of numerical tests is performed. One of the tests is
a clockwise rotation of a transported scalar �eld, shaped as a rectangular parallelepiped
(Figure 5). It is expected that for a pure convection an ideal numerical scheme does not
introduce a distortion into the initial shape, while moving it with the �ow. The idealized
2D constant-depth domain consists of 201×201 grid cells with the grid size (�x×�y)=
(1× 1) km. Zero �uxes are assumed at the four boundaries. The initial non-zero transported
scalar values, C0=1, are located within the rectangle with bottom-left and top-right corners
(44�x; 84�y) and (78�x; 118�y), respectively. The time step was chosen to give a maximal
Courant number 0.8 for UTOPIA and TOP-12 schemes, and 0.4 for TOP-10 (A and B). For
the scheme comparison, an error measure at the rectangular grid with the grid size �x is
introduced as

	(�x)=

∑
i; j |Ci; j − C∗

i; j|∑
i; j |C∗

i; j|
(17)

where C∗ is the exact solution, and C is the numerical one. Computations are conducted to
allow �ve complete rotations of the pro�le, and then the �nal extrema (Cmin; Cmax), and the
error measures are compared in Table I.

3. THIRD-ORDER POLYNOMIAL METHOD

The higher the degree of the polynomial (5), the higher the accuracy of the resulting com-
putational scheme. The maximum accuracy and stability within the class of third-degree

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 41:997–1019
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Table I. Comparison of main features and performance of UTOPIA and TOP schemes
for the pure convection test.

Maximum Number of nodes: across
Courant �ux stencil=in �ux stencil=in

Scheme numbers computational stencil Cmax Cmin Error, 	

UTOPIA |�|=1; |�|=1 4=8=12 1.109 −0:057 0.32546
TOP-12 |�|=1; |�|=1 2=6=12 1.110 −0:060 0.32567
TOP-10A |�|+ |�|=1 2=5=10 1.113 −0:061 0.33692
TOP-10B |�|+ |�| = 1 2=5=10 1.111 −0:061 0.32664

Figure 6. A modulus of ampli�cation factor for TOP-16 scheme.

polynomials (M=3) can be achieved by retaining all 16 terms, leading to

(18)

In Equation (18) shaded terms contribute into individual x- or y-direction, while rest terms
represent mixed x- and y-contribution (equivalent to the spatial cross-derivative terms in
the Taylor-series expansion). Diagonal bends identify terms of a similar order, shown by
Roman numerals. A single-step update for scheme (4), (18) is given in Appendix A.1, and
the computed ampli�cation factor for the selected values of phase angle � is presented in
Figure 6. The von Neumann stability analysis shows that the method is stable for |�|61; |�|61.
Curiously, the method is stable far beyond the CFL condition, if one of the Courant numbers
assumes a value in the vicinity of 0.5. However, the method is ine�cient due to a large
number of nodes used in the computational stencil. Following the procedure presented in

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 41:997–1019
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Section 2, several more e�cient third-order schemes can be developed. To obtain a barely
third-order accurate scheme, one has to retain all terms of up to third order (ten terms above
the dash–dot line in the polynomial (18)). The scheme would require a computational stencil,
having at least 10 nodes, as shown in Figures 2 and 3. It is expected that schemes utilizing
less cross-terms in polynomial (18) (and less number of nodes, respectively) can only be
second-order accurate, as the eight-node MOSQUITO scheme [11]. Generally, con�guration
of the computational stencil and a number of nodes in it are not unique, because di�erent
methods of the scheme derivation may produce di�erent results. For example, the 11-node
STOUS scheme [12] utilizes the same-order cross-terms (and almost as accurate) as the 10-
node schemes of Leonard and Niknafs [6], Rasch [7], Ekebj�rg and Justesen [8]. A number
of nodes and con�guration of �ux stencils are not unique as well (compare the �ve-node �ux
stencil of Ekebj�rg and Justesen [8], and six-node one of Leonard and Niknafs [6], Rasch [7],
Gerges and McCorquodale [12]). Even a width of the stencils is not unique, in spite the fact
that all the above-mentioned �ux stencils are three-node wide. Addition of fourth- or higher-
order cross-terms in polynomial (18) does not improve the formal accuracy of the third-order
scheme; however, they do improve the phase behaviour and stability. Thus, the third-order
UTOPIA [10] algorithm, considering additionally two cross-terms of fourth order, 0(�3�) and
0(��3), widens the typical for the 10-node schemes stability criterion from |�| + |�|61 to
|�|61; |�|61. The price paid for the extended stability was increased number of nodes within
the computational stencil (twelve nodes), in the �ux stencil (eight), and increased width
of the stencil (four nodes). Even though, utilized in the UTOPIA derivation �ux integral
method produces a unique solution, some other non-unique methods may yield more compact
and e�cient schemes. In the following sections, the procedure presented in Section 2 is
used to derive a series of two-dimensional third-order schemes having 12-node and 10-node
computational stencils. For a convenience of reference, the methods are identi�ed as TOP-
12 and TOP-10, respectively. The schemes are concisely formulated in terms of A;D;Si ;Sj,
which one can easily substitute into Equations (13)–(14) to obtain the explicit expressions
for the convective and di�usive �uxes. Additionally, intermediate and alternative formulations
are given in Appendix A.

3.1. TOP-12 method

Retaining terms of up to fourth-order in polynomial (18) (12 terms above a solid line), and
utilizing a 12-node computational stencil and a six-node �ux stencil as in Figure 7, one
obtains

Si = (Ck
i+1; j ; C

k
i; j ; C

k
i−1; j ; C

k
i+1; j−1; C

k
i; j−1; C

k
i−1; j−1)

Sj = (Ck
i; j+1; C

k
i; j ; C

k
i; j−1; C

k
i−1; j+1; C

k
i−1; j ; C

k
i−1; j−1)

A(
;  ) = ((1− 
)(2− 
)(1−  )=6; ((1 + 
)(5− 2
)
−  (2 + 3
− 2
2))=6;−(1− 
2)(1−  )=6;

 (1− 
)(2− 
)=6;  (2 + 3
− 2
2)=6;− (1− 
2)=6)

D(
;  ) = ((1− 
)(1−  );−(1− 2
)(1−  );

−
(1−  ); (1− 
) ;−(1− 2
) ;−
 )

(19)

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 41:997–1019



1006 P. TKALICH AND E. S. CHAN

x i-1              i

y

j-1 

j 

u

S

N

W E

Figure 7. Computational stencil for the TOP-12 scheme (black dots). Nodes for the east-face convective
�ux (for u as shown) are marked with circles. Shaded cells are involved in di�erencing along the x-axis.

Figure 8. A modulus of ampli�cation factor for TOP-12 scheme.

The respective east-face convective �ux for the TOP-12 scheme is

CE = 1
6(1− �)(2− �)(1− �)Ck

i+1; j − 1
6 (1− �2)(1− �)Ck

i−1; j

+ 1
6((5 + 3�− 2�2)− �(2 + 3�− 2�2))Ck

i; j +
1
6(1− �)(2− �)�Ck

i+1; j−1

+1
6 (2 + 3�− 2�2)�Ck

i; j−1 − 1
6 (1− �2)�Ck

i−1; j−1

(20)

Some intermediate steps of the TOP-12 derivation, as well as a single-step update for the
scheme are given in Appendix A.2. The von Neumann condition de�nes a stability region
for the scheme as |�|61; |�|61; 06�60:25; 06�60:25, which is similar to that of the
UTOPIA algorithm [10]. The ampli�cation factor for the convective scheme is plotted in
Figures 8 and 9 for di�erent values of the Courant numbers and phase angle. Using the TOP-
12 scheme for the convective term approximation, the result of the rotation test computation
is shown in Figure 10, and the respective extrema values and the error measures are given
in Table I. The UTOPIA algorithm demonstrates almost identical results for the test. In fact,

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 41:997–1019
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Figure 9. Polar plot of ampli�cation factor for TOP-12 scheme for the
di�erent values of the Courant numbers.

Figure 10. Test case for a pure convection of rectangular parallelepiped. Computed scalar �eld after
�ve complete rotations using TOP-12 scheme.

the �nal pro�les are so close to each other that even the wiggle patterns are indistinguishable
(Figure 11). Using 25% less nodes for the �ux expression than UTOPIA, the TOP-12 scheme
is more e�cient per a single node computation.
Di�usive �ux of the TOP-12 scheme utilizes the same (six node) stencil as the convective

one. The convective and di�usive �uxes are easily combined to form an e�cient single-
time-step algorithm. An example of the algorithm application for the test case (with the
uniform di�usion coe�cient E=5m2=s) is given in Figure 12. Numerical computations for
di�erent Courant and di�usion numbers show robustness of the combined scheme. One may
notice that di�usive �ux of the TOP-12 scheme can be presented as the bilinear upwind

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 41:997–1019
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Figure 11. Test case for a pure convection of rectangular parallelepiped. Comparison of the computed
scalar �eld after �ve complete rotations using TOP-12 and UTOPIA schemes.

Figure 12. Test case for a convection and di�usion of rectangular parallelepiped. Computed scalar �eld
after �ve complete rotations using TOP-12 scheme.

interpolation between the �uxes of the forward-time-central-space-di�erence (FTCS) scheme
(C ′

E|FTCSi; j =Ck
i+1; j − Ck

i; j), i.e. for positive u

C ′
E|TOP-12i; j =(1− �)(1− �)C ′

E|FTCSi; j + �(1− �)C ′
E|FTCSi−1; j + (1− �)�C ′

E|FTCSi; j−1 + ��C ′
E|FTCSi−1; j−1

3.2. TOP-10 schemes

Neglecting all fourth-order cross-terms, one may consider more simple cases of polynomial
(18) (remaining ten terms are underlined by a dash–dot line). To de�ne the polynomial
coe�cients for such a case, a 10-node computational stencil is required. This is the minimum

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 41:997–1019
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Figure 13. Computational stencil for the TOP-10A scheme (black dots). Nodes for the
east-face convective �ux (for u as shown) are marked with circles. Shaded cells are involved

in di�erencing along the x-axis.

needed for the formal third-order accuracy in two dimensions. Using the algorithm elaborated
in Section 2, two schemes having �ve-node �ux stencils are derived.
Scheme A: For the stencil shown in Figure 13, the scheme can be derived as

Si = (Ck
i+1; j ; C

k
i; j ; C

k
i−1; j ; C

k
i+1; j−1; C

k
i; j−1)

Sj = (Ck
i; j+1; C

k
i; j ; C

k
i; j−1; C

k
i−1; j+1; C

k
i−1; j)

A(
;  ) = ((1− 
)(2− 
− 3 )=6; (1 + 
)(5− 2
)=6− 
 =2

− (1− 
2)=6; (1− 
) =2; 
 =2)

D(
;  ) = (1− 
−  ; 2
− 1 +  ;−
;  ;− )

(21)

The respective east-face convective �ux is

CE = 1
6 �(1− �)(2− �− 3�)Ck

i+1; j +
1
6 �((5 + 3�− 2�2)− 3��)Ck

i; j

− 1
6 �(1− �2)Ck

i−1; j +
1
2 ��(1− �)Ck

i+1; j−1 +
1
2 �

2�Ck
i; j−1

(22)

Scheme B: For the stencil shown in Figure 14, the scheme is developed as

Si = (Ck
i+1; j ; C

k
i; j ; C

k
i−1; j ; C

k
i; j−1; C

k
i−1; j−1)

Sj = (Ck
i; j+1; C

k
i; j ; C

k
i; j−1; C

k
i−1; j ; C

k
i−1; j−1)

A(
;  ) = ((1− 
)(2− 
)=6; (1 + 
)(5− 2
)=6−  (2− 
)=2;
− (1− 
)(1 + 
− 3 )=6; (2− 
) =2;−(1− 
) =2)

D(
;  ) = (1− 
; 2
− 1−  ;  − 
;  ;− )

(23)

The respective east-face convective �ux for the scheme is given by

CE = 1
6 �(1− �)(2− �)Ck

i+1; j +
1
6 �((1 + �)(5− 2�)− 3�(2− �))Ck

i; j

− 1
6 �(1− �)(1 + �− 3�)Ck

i−1; j +
1
2 ��(2− �)Ck

i; j−1 − 1
2 ��(1− �)Ck

i−1; j−1 (24)
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Figure 14. Computational stencil for the TOP-10B scheme (black dots). Nodes for east-face
convective �ux (for u as shown) are marked with circles. Shaded cells are involved

in di�erencing along the x-axis.

Some intermediate expressions for the TOP-10 schemes derivation are given in Appendices
A.3 and A.4. Plots of the ampli�cation factor for the TOP-10A scheme are given in Fig-
ures 15 and 16. The von Neumann analysis identi�es the stability region for the schemes as
|�|+ |�|61; 06�60:25; 06�60:25. Having the single-step updates similar to some of the
algorithms from References [6–8], the TOP-10 schemes are using narrower �ux stencils with
fewer nodes (compare Figures 13 and 14 with Figures 2 and 3). Even though, the computa-
tional cost of TOP-10 schemes per one node is less than that of TOP-12, overall the latter
scheme is more e�cient because it allows for larger time step. The rotation test for the TOP-
10 (A and B) schemes show slightly more wiggling behaviour, but still have a comparable
accuracy with TOP-12 and UTOPIA (see Table I); though the di�erences are hardly notice-
able (Figure 17). This con�rms the �nding of Leonard et al. [10] that addition of cross-terms
into a scheme does not improve accuracy in as much as stability. All the compared schemes
are strictly mass conservative, i.e.

∑
i; j

Ci; j

/∑
i; j

C∗
i; j=1

With the cross-terms omitted altogether in polynomial (18) (only shaded seven terms re-
main), the Davis and Moore [3] scheme follows:

Si = (Ck
i+1; j ; C

k
i; j ; C

k
i−1; j); Sj=(Ck

i; j+1; C
k
i; j ; C

k
i; j−1)

A(
;  ) = ((1− 
)(2− 
)=6; (1 + 
)(5− 2
)=6;−(1− 
2)=6) (25)

D(
;  ) = (1− 
; 2
− 1;−
)

The scheme is unstable for pure convection, except along the axes. In the one-dimensional
case the scheme reduces to the QUICKEST algorithm.
Due to the �ux-di�erence formulation, the developed higher-order explicit schemes guar-

antee mass conservation in a computational domain and near boundaries. Before computing a
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Figure 15. A modulus of ampli�cation factor for TOP-10 schemes, as a function of Courant number �
and phase angle �, for the di�erent values of Courant number � and di�usion number �.

new node value Ck+1
i; j , one must ensure that every node from the four �ux stencils (Si ;Si−1;Sj

and Sj−1) are within the computational domain; otherwise, the associated with the protruded
stencil �ux is computed to satisfy boundary conditions. Usage of more compact schemes, such
as TOP, may increase number of useful internal computational points by means of delaying
the switch to the boundary mode. This is especially obvious for domains having narrow chan-
nels along the x- or y-direction. For a comparison, UTOPIA would require a minimum of
four nodes per a channel cross-section, other reviewed in this paper schemes need at least
three nodes, and all TOP schemes would require only two nodes.

3.3. Accuracy evaluation of the TOP-12 scheme

It was noted [1, 13] that for a one-dimensional case, if M th-degree piece-wise polynomial is
used for the sub-grid interpolation, the resulting convection scheme will be (M + 1)th-order
accurate in both space and time. This was shown analytically for �rst-, second-, and third-
order (QUICKEST) methods. Similar analysis can be done for the TOP-12 scheme, though
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Figure 16. Polar plot of ampli�cation factor for TOP-10 schemes for the di�erent
values of the Courant numbers.

Figure 17. Test case for a pure convection of rectangular parallelepiped. Comparison of
cross-sections of the computed scalar �eld after �ve complete rotations using UTOPIA,

TOP-12, TOP-10A and TOP-10B schemes.

the derivation is complicated by presence of the cross-terms. Leonard [14] suggested (an
easier alternative) to use a grid-re�nement study in order to show the true convergence rate.
According to the method, if the error measure at the rectangular grid with the grid size �x is
introduced as Equation (17), then the convergence rate of the numerical solution to the exact
one can be obtained from

R= ln
(

	(�x)
	(�x=2)

)
1
ln 2

(26)

where the rate, R, should approach an asymptotic value as the grid size decreases.
To perform the grid-re�nement study, the test case from Section 2.4 is modi�ed as follows.

The same size 2D constant-depth domain (200× 200) km is covered by a mesh with the grid
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Figure 18. Test case for a pure convection of the Gaussian hill. Initial state.

Figure 19. Test case for a pure convection of the Gaussian hill. The di�erence between exact and
computed shapes after �ve complete rotations.

size �x=�y=(2; 1; 0:5 and 0:25) km, leading to the computational grids with (101×101),
(201×201), (401×401) and (801×801) nodes, respectively. Clockwise rotation of the Gaus-
sian hill, as in Figure 18, is considered; and the maximal Courant number of 0.8 is maintained
through the numerical experiment. The maximal di�erence between computed and exact values
for the grid size of 0:25 km is found to be within of ±0:002, as in Figure 19. The computed
error measures and convergence rates are summarized in Table II. The analysis shows that
the TOP-12 scheme is third-order accurate under variable velocity conditions.
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Table II. Grid-re�nement study of convection terms using the TOP-12 scheme.

Grid size, �x (km) Error measure, 	 Convergence rate, R

2 4:189× 10−1 —
1 8:955× 10−2 2.21
0.5 1:473× 10−2 2.60
0.25 1:792× 10−3 3.04

4. CONCLUSION

Using the polynomial interpolation method, a series of two-dimensional explicit third-order
accurate numerical schemes (TOP) is obtained. For a chosen computational stencil a unique
single-step update can be easily derived using the formalized matrix technique. The �ux
splitting procedure of the update, involving the solution of a set of linear equations, is not
necessarily unique. However, the linearly dependent equations can be substituted with other
external relationships to introduce desirable properties into the scheme. This feature is uti-
lized in the paper to increase e�ciency of high-order schemes by employing narrow �ux
stencils with reduced number of nodes. Thus, TOP-12 scheme, having a six-node �ux sten-
cil, requires less computation per node, than the equally accurate eight-node UTOPIA algo-
rithm. Compared to the four-node-wide �ux stencil of UTOPIA, the TOP-12’s �ux stencil
is just two-node-wide, allowing for a coarser mesh to be used in the vicinity of bound-
aries or in narrow channels. In terms of accuracy and stability the two schemes are similar.
The grid resolution test shows that the TOP-12 scheme is third-order accurate. The TOP-10
(A and B) schemes show the same preferable features over equivalent algorithms of other
authors.

APPENDIX A

A.1. TOP-16

A single-step update for the TOP-16 convective scheme results in

Ck+1
i; j = 1

36��(1− �2)(1− �2)Ck
i−2; j−2 − 1

12��(1 + �)(2− �)(1− �2)Ck
i−1; j−2

− 1
12�(2− �)(1− �2)(1− �2)Ck

i; j−2 +
1
36��(1− �)(2− �)(1− �2)Ck

i+1; j−2

− 1
12��(1− �2)(1 + �)(2− �)Ck

i−2; j−1 +
1
4��(1 + �)(2− �)(1 + �)(2− �)Ck

i−1; j−1

+ 1
4�(2− �)(1− �2)(1 + �)(2− �)Ck

i; j−1 − 1
12��(1− �)(2− �)(1 + �)(2− �)Ck

i+1; j−1

− 1
12�(1− �2)(2− �)(1− �2)Ck

i−2; j +
1
4�(1 + �)(2− �)(2− �)(1− �2)Ck

i−1; j
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+ 1
4(2− �)(1− �2)(2− �)(1− �2)Ck

i; j − 1
12�(1− �)(2− �)(2− �)(1− �2)Ck

i+1; j

+ 1
36��(1− �2)(1− �)(2− �)Ck

i−2; j+1 − 1
12��(1 + �)(2− �)(1− �)(2− �)Ck

i−1; j+1

− 1
12�(2− �)(1− �2)(1− �)(2− �)Ck

i; j+1 +
1
36��(1− �)(2− �)(1− �)(2− �)Ck

i+1; j+1

A.2. TOP-12

Retaining terms of up to fourth order in polynomial (18), using computational and �ux stencils
as shown in Figure 7, and requiring that the polynomial passes through all nodes from the
computational stencil, one obtains the following system of linear equations:

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1 1 2 2 2 2 4 4 8 8
1 0 0 0 2 0 0 0 4 0 8 0
1 2 4 8 1 2 4 8 1 2 1 2
1 1 1 1 1 1 1 1 1 1 1 1
1 0 0 0 1 0 0 0 1 0 1 0
1 −1 1 −1 1 −1 1 −1 1 −1 1 −1
1 2 4 8 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0
1 −1 1 −1 0 0 0 0 0 0 0 0
1 1 1 1 −1 −1 −1 −1 1 1 −1 −1
1 0 0 0 −1 0 0 0 1 0 −1 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

f0;0
f1;0
f2;0
f3;0
f0;1
f1;1
f2;1
f3;1
f0;2
f1;2
f0;3
f1;3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Ck
i−1; j−2
Ck

i; j−2
Ck

i−2; j−1
Ck

i−1; j−1
Ck

i; j−1
Ck

i+1; j−1
Ck

i−2; j
C k

i−1; j
C k

i; j

C k
i+1; j

C k
i−1; j+1
Ck

i; j+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
which also can be rewritten in the matrix form as Equation (6). The inverse matrix B−1 is
found using the Gauss–Jordan method, as

B−1 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 −1=6 1 −1=2 −1=3 0 0

0 0 0 0 0 0 0 1=2 −1 1=2 0 0

0 0 0 0 0 0 1=6 −1=2 1=2 −1=6 0 0

0 −1=6 0 0 1 0 0 0 −1=2 0 0 −1=3
−1=6 1=6 −1=6 1 −1=2 −1=3 1=6 −1=2 0 1=3 −1=3 1=3

0 0 0 1=2 −1 1=2 0 −1=2 1 −1=2 0 0

0 0 1=6 −1=2 1=2 −1=6 −1=6 1=2 −1=2 1=6 0 0

0 0 0 0 1=2 0 0 0 −1 0 0 1=2

0 0 0 1=2 −1=2 0 0 −1 1 0 1=2 −1=2
0 1=6 0 0 −1=2 0 0 0 1=2 0 0 −1=6
1=6 −1=6 0 −1=2 1=2 0 0 1=2 −1=2 0 −1=6 1=6

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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Using relationship (7), the computed coe�cients f have to be substituted into polynomial (5)
to obtain the single-step update as in (4), where

�S= (Ck
i−1; j−2; C

k
i; j−2; C

k
i−2; j−1; C

k
i−1; j−1; C

k
i; j−1; C

k
i+1; j−1; C

k
i−2; j ; C

k
i−1; j ; C

k
i; j

C k
i+1; j ; C

k
i−1; j+1; C

k
i; j+1)

p1 =− 1
6��(1− �2); p2=− 1

6�(1− �)(1− �2); p3=− 1
6 ��(1− �2)

p4 = 1
2��(2 + �− �2 + � − �2); p5= 1

2�(1− �)(2 + �− �2 + � − �2)

p6 =− 1
6 ��(1− �)(2− �); p7=− 1

6 �(1− �2)(1− �)

p8 = 1
2 �(1− �)(2 + �− �2 + � − �2); p9= 1

2 (1− �)(1− �)(2 + �− �2 + � − �2)

p10 =− 1
6 �(1− �)(2− �)(1− �); p11=− 1

6 ��(1− �)(2− �)

p12 =− 1
6�(1− �)(1− �)(2− �)

Second derivatives of the polynomial P with respect to � and � are

@2P
@�2

= ��Ck
i−2; j−1 + (1− 3�)�Ck

i−1; j−1 − (2− 3�)�Ck
i; j−1

+ (1− �)�Ck
i+1; j−1 + �(1− �)Ck

i−2; j + (1− 3�)(1− �)Ck
i−1; j

− (2− 3�)(1− �)Ck
i; j + (1− �)(1− �)Ck

i+1; j

@2P
@�2

= ��Ci−1; j−2 + �(1− 3�)Ci−1; j−1 − �(2− 3�)�Ci−1; j

+ �(1− �)Ci−1; j+1 + (1− �)�Ci; j−2 + (1− �)(1− 3�)Ci; j−1

− (1− �)(2− 3�)Ci; j + (1− �)(1− �)Ci; j+1

The ampli�cation factor for the TOP-12 scheme reads

G=p6 + p9 + p11 + (p5 + p8 + p10 + p12)c1 + (p2 + p7)c2 + p4(c21 − s22)

+ (p1 + p3)(c1c2 − s1s2) + I [−(p5 + p8 − p10 − p12)s1 − (p2 + p7)s2

− (p1 + p3)(c1s2 − s1c2)− 2p4c1s1]

where c1= cos(�); s1= sin(�); c2= cos(2�); s2= sin(2�).
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A.3. TOP-10A

Coe�cients of polynomial (5) for the TOP-10A scheme (Figure 13) are de�ned by the system
of linear equations

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1 1 −1 −1 −1 1 1 −1
1 0 0 0 2 0 0 4 0 8
1 −1 1 −1 1 −1 1 1 −1 1
1 1 1 1 1 1 1 1 1 1
1 0 0 0 1 0 0 1 0 1
1 2 4 8 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0
1 −1 1 −1 0 0 0 0 0 0
1 0 0 0 −1 0 0 1 0 −1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

f0;0
f1;0
f2;0
f3;0
f0;1
f1;1
f2;1
f0;2
f1;2
f0;3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Ck
i−1; j+1
Ck

i; j−2
Ck

i+1; j−1
Ck

i−1; j−1
Ck

i; j−1
Ck

i−2; j
C k

i−1; j
C k

i; j

C k
i+1; j

C k
i; j+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
leading to the following inverse matrix:

B−1=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 −1=6 1 −1=2 −1=3 0
0 0 0 0 0 0 1=2 −1 1=2 0
0 0 0 0 0 1=6 −1=2 1=2 −1=6 0
0 −1=6 0 0 1 0 0 −1=2 0 −1=3

−1=2 0 −1=2 0 1=2 0 1=2 −1 1=2 1=2
0 0 1=2 1=2 −1 0 −1=2 1 −1=2 0
0 0 0 0 1=2 0 0 −1 0 1=2
1=2 0 0 1=2 −1=2 0 −1 1 0 −1=2
0 1=6 0 0 −1=2 0 0 1=2 0 −1=6

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
The resulting single-step update for the TOP-10A convective scheme reads

Ck+1
i; j =− 1

2 ��(1− �)Ck
i−1; j+1 − 1

6 �(1− �2)Ck
i; j−2 − 1

2 ��(1− �)Ck
i+1; j−1

+ 1
2 ��(�+ �)Ck

i−1; j−1 +
1
2 �((1 + �)(2− �) + �(1− �− �))Ck

i; j−1

− 1
6 �(1− �2)Ck

i−2; j +
1
2 �((1 + �)(2− �) + �(1− �− �))Ck

i−1; j

+ 1
2((1− �2)(2− �) + (1− �2)(2− �)− 2��(1− �− �)− 2)Ck

i; j

− 1
6 �(1− �)(2− �− 3�)Ck

i+1; j − 1
6 �(1− �)(2− 3�− �)Ck

i; j+1
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A.4. TOP-10B

For the stencil shown in Figure 14, the polynomial coe�cients are de�ned by the set of linear
equations

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1 1 2 2 2 4 4 8
1 0 0 0 2 0 0 4 0 8
1 2 4 8 1 2 4 1 2 1
1 1 1 1 1 1 1 1 1 1
1 0 0 0 1 0 0 1 0 1
1 2 4 8 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0
1 −1 1 −1 0 0 0 0 0 0
1 0 0 0 −1 0 0 1 0 −1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

f0;0
f1;0
f2;0
f3;0
f0;1
f1;1
f2;1
f0;2
f1;2
f0;3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Ck
i−1; j−2
Ck

i; j−2
Ck

i−2; j−1
Ck

i−1; j−1
Ck

i; j−1
Ck

i−2; j
C k

i−1; j
C k

i; j

C k
i+1; j

C k
i; j+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
which leads to the inverse matrix

B−1=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 −1=6 1 −1=2 −1=3 0
0 0 0 0 0 0 1=2 −1 1=2 0
0 0 0 0 0 1=6 −1=2 1=2 −1=6 0
0 −1=6 0 0 1 0 0 −1=2 0 −1=3

−1=2 1=2 −1=2 3 −2:5 1=2 −2:5 2 0 0
0 0 1=2 −1 1=2 −1=2 1 −1=2 0 0
0 0 0 0 1=2 0 0 −1 0 1=2
1=2 −1=2 0 −1 1 0 1=2 −1=2 0 0
0 1=6 0 0 −1=2 0 0 1=2 0 −1=6

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Single-step update for the TOP-10B convective scheme becomes

Ck+1
i; j =− 1

2 ��(1− �)Ck
i−1; j−2 − 1

6 �(1− �)(1 + � − 3�)Ck
i; j−2

− 1
2 ��(1− �)Ck

i−2; j−1 + ��(3− �− �)Ck
i−1; j−1 − 1

6 �(1− �)(2− �)Ck
i+1; j

+ 1
2 �((1 + �)(2− �)− �(5− �− 2�))Ck

i; j−1 − 1
6 �(1− �)(1 + �− 3�)Ck

i−2; j

+ 1
2 �((1 + �)(2− �)− �(5− 2�− �))Ck

i−1; j − 1
6 �(1− �)(2− �)Ck

i; j+1

+ 1
2 ((1− �2)(2− �) + (1− �2)(2− �) + ��(4− �− �)− 2)Ck

i; j
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